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Deep sea canyons and seamounts are topographically complex features that are
considered to be biological hotspots. Anthropogenic pressures related to climate
change and human activities are placing the species that inhabit these features at risk.
Though studies have examined species composition on seamounts and canyons, few
have compared communities between them, and even fewer studies have examined
how species’ abundances correlate with environmental conditions or geomorphology.
Consequently, this study compares species composition, community structure, and
environmental variables between Northwest Atlantic continental margin canyons and
seamounts along the New England Seamount Chain. Geoforms were also related to the
occurrence of phyla and biodiversity. Overall, there was a significant difference in species
composition between canyons and seamounts with sponges, corals, sea urchins
and seastars contributing heavily to observed differences. Environmental conditions of
temperature and salinity and the seafloor property slope contributed significantly to
communities observed on seamounts, while substrate, depth and salinity contributed
significantly to canyon communities. Abundances were significantly higher in canyons,
but taxonomic richness, evenness, and diversity were all greater on seamounts. In an
era where climate change and human activity have the potential to alter environmental
parameters in the deep sea, it is important to examine factors that influence the spatial
distribution of deep-sea benthic communities.

Keywords: climate change, deep sea canyons, seamounts, communities, corals, sponges, North Atlantic

INTRODUCTION

Biological communities in the deep sea can be heavily impacted by commercial fishery trawling
(Althaus et al., 2009; Hiddink et al., 2017), are predicted to experience climate-related stress
(Lazier, 1988; Dickson et al., 2002; Levin and Le Bris, 2015; Danovaro et al., 2017), and face future
potential threats from deep sea mining. Indeed, recent studies indicate that water column properties
of the deep-sea are changing in response to a changing climate (Purkey and Johnson, 2010;
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Bindoff et al., 2019; Brito-Morales et al., 2020). The deep sea
has been warming over the past decades and it is predicted this
trend will continue with on-going changes in climate (Bindoff
et al., 2019). The proposed rate of warming of 0.01–0.1◦C per
decade (Purkey and Johnson, 2010) in the deep ocean (1,000–
4,000 m) may also accelerate due to climate change (Brito-
Morales et al., 2020). In addition to warming, dissolved oxygen
(DO) has declined over the past few decades and this trend is
predicted to continue (Joos et al., 2003; Schmidtko et al., 2017).
Species that inhabit the deep sea have evolved in relatively stable
environmental conditions (Ayala et al., 1975), in which small
environmental changes may negatively affect the physiology and
growth of deep-sea species (Pörtner and Farrell, 2008; Dijkstra
et al., 2021). Anthropogenic stressors associated to changes in
climate may lead to changes in the distribution and abundance
of deep-sea benthic communities.

Water temperatures are expected to increase and dissolved
oxygen concentrations are expected to decline around the
seamounts and submarine canyons in the Northwestern Atlantic
(Bindoff et al., 2019). Submarine canyons and seamounts are
ecologically and economically important features that support
a high biodiversity and biomass of cold water corals, sponges
and bryozoan reefs (Rowden et al., 2010; Vetter et al., 2010;
Lapointe et al., 2020). They are also habitat for fishes, some of
which are commercially important (Miller et al., 2015; Quattrini
et al., 2015). Though canyons and seamounts serve as hotspots
for benthic faunal diversity and abundance, their contrasting
geomorphological and environmental variables can differentially
influence associated species assemblages (Schlacher et al., 2007;
Cordes et al., 2010; Quattrini et al., 2015, 2017; Gallo et al.,
2020). Valleys in the continental slope often constrain accelerated
currents that transport nutrients and debris down slope (Vetter
and Dayton, 1999; De Leo et al., 2010) to create complex
circulation patterns that facilitate high secondary production
(Shepard et al., 1979; Mortensen and Buhl-Mortensen, 2005).
Due to their rugged topography, canyons are not typically
trawled and can therefore provide refuge for commercially
harvested species (Yoklavich et al., 2000). Seamounts are
undersea mountains rising from the abyssal plains. Similar to
canyons, their topography disrupts ocean circulation, causing
localized changes in currents that at times remove soft sediment
(Koslow et al., 2016). Seamounts are thought to serve as
stepping stones for larval dispersal (Rowden et al., 2010) and
their unique topography combined with associated up-or-down-
welling enhances biodiversity (Roden and Taft, 1985; Genin et al.,
1986; Levin and Sibuet, 2012).

Seamount and submarine canyon features influence the
distribution and abundance of organisms and can increase
regional biodiversity (Rowden et al., 2010). Hard-bottoms
within these features facilitate dispersal and the maintenance
of inhabitant populations by serving as favorable substrates
for species such as corals and sponges (Rowden et al., 2010;
Dijkstra et al., 2021). Although many studies have characterized
communities in submarine canyons (e.g., Hargrave et al., 2004;
Kelly et al., 2010; Quattrini et al., 2015) and on seamounts
(e.g., McClain et al., 2009; Rowden et al., 2010; Lapointe et al.,
2020), few have compared communities on seamounts to those
observed in canyons (e.g., Kelly et al., 2010; Rowden et al., 2010).

Further, many studies obtain presence/absence data either to
establish a species inventory or due to the difficulties in obtaining
accurate counts of organisms per unit area (Hargrave et al.,
2004; Mortensen and Buhl-Mortensen, 2005), which limits the
usefulness of the data for detecting areas of high abundances
or biodiversity for management applications (Gonzalez-Mirelis
et al., 2021). Using species abundance data can provide a more
comprehensive representation of benthic communities that can
be used to improve models designed to understand species
distribution patterns under a changing climate (Morato et al.,
2020) or improve species distribution models. In this study, we
use the abundance of individual taxa to (1) compare assemblages
observed in canyons and on seamounts of the Northwest
Atlantic continental margin and New England Seamount Chain,
respectively, (2) determine taxa that are common to these
assemblages, (3) examine community-environment relationships
in canyons and seamounts, and (4) examine relationships
between geomorphology and biodiversity.

MATERIALS AND METHODS

Study Site and Data Collection
Remotely-operated vehicle (ROV) underwater video footage
from five canyons and five seamount benthic communities
(Figure 1) along the Northwest Atlantic continental margin and
New England Seamount Chain were compared (see Figure 2 for
site descriptions). One ROV transect was collected per site with
the exception of McMaster Canyon in which two shorter ROV
transects were collected. Depth of ROV dives ranged between 410
to 2,741 m with bottom time ranging from 4 to 8 h (see Table 1).
The video footage was collected using the ROV Deep Discoverer
(D2) aboard the NOAA Ship Okeanos Explorer. D2 is equipped
with a CTD that records temperature, salinity, dissolved oxygen,
and depth. It also has two lasers that are spaced 0.1 m apart.
The location of D2 throughout the ROV dive is determined by
an ultra-short baseline (USBL) positioning system (see Kennedy
et al., 2019 for more information on ROV navigation).

Video Analysis
Approximately 57 h of video of the seafloor was analyzed by
one observer. Each ROV track was divided into 50 m segments.
Within each segment, organisms were identified to the lowest
taxonomic level possible using a combination of the recorded
auditory and written events log for each dive. Identifications were
also verified using identification guides (National Oceanic and
Atmospheric Administration, Office of Ocean Exploration and
Research, 2020). Corals of the New England Seamount Chain
have been extensively identified using physical samples (reviewed
in Watling et al., 2011; Lapointe et al., 2020), however, our
identification was made based on video imagery as the ROV
was not equipped to collect voucher specimens during these
expeditions. Individuals that could not be identified to species,
genus or family level were identified at the class or higher level.
Higher identification level occurred when there was insufficient
morphological detail of an individual for genera or family level
identification. Once the video was annotated, annotations were
then synchronized to the navigation and CTD files using a
customized Python script.
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FIGURE 1 | Location of study sites along the Northwest Atlantic continental margin and New England Seamount Chain. The canyon sites are marked with the
orange diamonds and the seamount sites are marked with the yellow stars. Figure modified from Dijkstra et al. (2021).

Organismal abundances were obtained by annotating
organisms observed within the 0.1 m laser dots with an
additional 0.2 m analyzed on either side of the laser points for a
total width of 0.5 m. For portions of the video in which the lasers
were turned off, organisms were placed in bins of abundances
of 1, 2–4, 5–9, 10–14, and 15–19 with corresponding values
of 1, 3, 7, 12, and 17 used for further analysis. Segments with
organismal abundance higher than 20 were binned by groups of
10 (e.g., 21–30, 31–40 etc.) and were assigned the average (see
Dijkstra et al., 2021 for more information). Segments in which
the organisms could not be identified owing to the altitude of the
ROV or when the camera was zoomed in were not annotated.
Temperature, salinity, dissolved oxygen, depth, and slope were
averaged for each 50 m segment. All organism annotations were
plotted along the ROV track using ArcGIS (for an example see
Figure 2). Primary substrates were classified for each segment
using the Coastal and Marine Ecological Classification Standard
(CMECS, FGDC, 2012). Ten primary substrate classes were
identified: bedrock, silty bedrock, boulder, pebble, cobble, coarse
sand, muddy sand, silty sand, clayey sand, and coral rubble.

Statistical Analysis: Community
Composition and Environmental
Variables
To examine divergence in species assemblages between
canyons and seamounts, a Bray-Curtis resemblance matrix

was constructed using fourth-root transformed abundances
observed in each 50 m segment of the ROV track (total
number of segments was 1,796 with 1,105 segments that had
benthic species, which equates to ∼27,625 m2). A two-way
nested Analysis of Similarities (ANOSIM) with site nested
within seafloor feature (i.e., canyon or seamount) was used to
determine differences in faunal composition between canyons
and seamounts. To determine if our shallowest site (410–645 m),
Washington Canyon, significantly contributed to the differences
in species composition, we also performed a two-way nested
ANOSIM comparing canyons and seamounts excluding this
canyon. Discriminator taxa were calculated using SIMPER
(SIMilarities PERcentages) with the PRIMER 7.0 package.
Discriminator taxa, those with high and even distributions in
most segments observed in canyons, but rare or unevenly in
segments on seamounts, were determined. Discriminator taxa
were calculated using square-root transformed Bray-Curtis
similarities by first computing the average dissimilarity in species
composition between canyons and seamounts (Clarke and
Ainsworth, 1993). The overall average dissimilarity was then
broken down into separate contributions from each species
and the consistency with which each species contributed to
the overall dissimilarity. A good discriminator species not only
contributes to the overall dissimilarity, but does so consistently
(Clarke and Warwick, 2001).

To examine which suite of environmental variables (see
Table 1 for environmental variables) characterized canyon and
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FIGURE 2 | Individuals from the phylum Porifera plotted along a segment of the ROV track on Retriever Seamount. Top right corner: full ROV track plotted over 50 m
contour lines and bathymetry.

TABLE 1 | Description of all sites analyzed in this study along with ranges of depth (m), temperature (◦C), dissolved oxygen (mg/L), salinity (ppt) observed
at each dive site.

Site Expedition Bottom
time

Start lat/long End lat/long Depth (m) Temp (◦C) DO (mg/L) Salinity (ppt)

Washington Canyon EX1404L2 5:56:53 37◦ 24′ 36.89′′ −74◦ 27′ 52.68′′ 37◦ 24′ 30.84′′–74◦ 28′ 15.55′′ 410–645 5.28–6.96 4.07–5.13 35.87–35.94

Hendrickson Canyon EX1404L3 6:08:21 39◦ 1′ 24.55′′−72◦ 26′ 54.26′′ 39◦ 1′ 23.79′′–72◦ 27′ 0.52′′ 1445–1666 3.86–4.18 5.91–6 34.85–34.97

McMaster Canyon EX1404L3 6:05:29 39◦ 42′ 25.79′′−71◦ 35′ 55.07′′ 39◦ 42′ 4.45′′–71◦ 35′ 46.22′′ 1211–1347 4.07–4.22 5.87–6.03 34.93–34.97

USGS Hazard 2 EX1304L1 5:45:11 39◦ 43′ 43.04′′−69◦ 30′ 41.31′′ 39◦ 43′ 56.73′′–69◦ 30′ 57.53′′ 1965–2025 N/A N/A N/A

Okeanos Canyon EX1404L3 5:37:49 39◦ 51′ 35.34′′−69◦ 23′ 38.2′′ 39◦ 51′ 42.45′′–69◦ 23′ 42.01′′ 1359–1514 4.01–4.19 5.87–6.02 34.95–34.98

Physalia Seamount EX1404L3 4:04:47 39◦ 48′ 39.55′′−66◦ 55′ 55.12′′ 39◦ 48′ 51.34′′–66◦ 55′ 43.44′′ 2378–2584 2.85–3.14 5.83–5.95 34.9–35

Retriever Seamount EX1404L3 5:52:28 39◦ 50′ 9.76′′−66◦ 15′ 8.02′′ 39◦ 49′ 56.07′′–66◦ 14′ 40.30′′ 2001–2137 3.4–3.49 5.87–6 34.93–34.94

Kelvin Seamount EX1404L3 4:27:26 38◦ 51′ 26.76′′−63◦ 44′ 54.66′′ 38◦ 51′ 31.04′′–63◦ 44′ 24.45′′ 1949–2072 3.35–3.47 5.88–5.98 34.93–34.94

Atlantis II Seamount EX1404L3 8:09:52 38◦ 36′ 10.81′′−63◦ 19′ 21.05′′ 38◦ 35′ 55.03′′–63◦ 18′ 50.2′′ 2429–2741 2.82–3.2 5.68–5.83 34.91–34.94

Gosnold Seamount EX1404L3 5:24:42 38◦ 18′ 8.34′′−62◦ 30′ 38.62′′ 38◦ 17′ 52.44′′–62◦ 31′ 4.92′′ 1843–2134 3.7–4.03 5.87–5.98 34.95–34.96

seamount species assemblages, we correlated log transformed and
normalized environmental variables to the corresponding Bray-
Curtis similarity matrix calculated using the BEST procedure
with Spearman rank correlation coefficients (Clarke and
Ainsworth, 1993). Site “USGS Hazard2” was excluded from this
analysis as the CTD sensors did not function properly and
consequently only 915 segments were used for this analysis.
Temperature and depth were highly correlated (99%) in canyons
so only depth was used in the analysis. In contrast, all seamount
environmental variables were used in the BEST analysis.

Spearman rank correlations with 99 permutations tested for the
significance of the correlations with p = 0.01 as a significance
level due to the spatial autocorrelation in the environmental data
among segments within a ROV track. All of the above analyses
were performed in the statistical software program PRIMER-
E 7.0.

Taxonomic richness, abundance, Shannon-Wiener diversity
index (H′) and Pielou’s evenness index (J′) were calculated
for each 50 m ROV segment (1,105 segments in all). The
non-parametric Wilcoxon-Test was then used to determine
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differences in average richness, abundance, H′, and J′ between
seamounts and canyons as variables were not homogeneous and
did not conform to the assumptions of parametric statistics.

Geomorphic Features
Geomorphic features were classified using a semi-automated
terrain analysis technique (Masetti et al., 2018) applied to a full
coverage bathymetric grid of the study region synthesized from
publicly available quality-controlled multibeam sonar surveys.
Bathymetry was classified into four simple geomorphic landform
classes: flats, ridges, slopes, and valleys. Landform classes were
converted to proposed CMECS geoform classes primarily by re-
naming them as appropriate for the marine setting in which
the units occurred (seamount, continental slope, and abyssal
plain), yielding fourteen possible distinct geoform types. The
geoform classes for this study were limited to features discernible
from a 100 m resolution bathymetric grid and were thus
broad-scale in size. Fine-scale geomorphic features that are
visually apparent in ROV video (and that may be an important
contributor to habitat suitability for benthic fauna) are not
captured by the geoform classes. Every segment in each of the
study sites was categorized into one of 4 different geoform classes:
Continental Slope Slope or Continental Slope Valley (located
within the canyons region), and Seamount Ridge or Seamount
Slope (located within the seamounts region). Geoform classes
represent existing and provisional units derived in accordance
with NOAA’s Coastal and Marine Ecological Classification
Standard (CMECS). Diversity and abundances of phyla across
geoforms did not conform to the assumptions of parametric
statistics; therefore, the non-parametric test, Kruskal-Wallis, was
used to determine differences in diversity and abundances of
phyla among geoforms. If significant differences in abundances
were observed within phyla, non-parametric Wilcoxon-pair
tests were used to determine differences in abundances among
geoforms within phyla.

RESULTS

Ten primary substrates were identified in which 6 were
considered hard and 4 considered soft substrate. Seamount
transects were found to cover a greater percentage of hard
substrate than those in the canyons (Figure 3).

Overall, there was a significant difference in taxonomic
composition between canyon and seamount species assemblages
(R = 0.34, p = 0.0008). Interestingly, exclusion of Washington
Canyon resulted in slightly lower differences in species
composition (R = 0.39, p = 0.0001) between canyons and
seamounts. Taxa that consistently contributed 70% to the
dissimilarities between canyon and seamount assemblages were
sponges (Porifera sp. 2 and the genus, Farrea spp.), Echinoidea,
the cup coral Desmophyllum dianthus, the precious coral
Corallium spp., Actiniidea, the foraminifera Xenophyophorea,
and the deep-sea crab Chaceon quinquedens (Table 2).

Taxonomic richness, abundance, and diversity were greatest
on seamounts [X2 (1) = 54.7, p < 0.001, X2 (1) = 34.2, p < 0.001,
X2 (1) = 46.3, p < 0.001, respectively; Figure 4].

Environmental variables that correlated most strongly with
seamount assemblages were temperature, salinity, and slope
(R = 0.26, p = 0.01). Substrate, depth, and salinity correlated most
strongly to canyon communities (R = 0.27, p = 0.01).

Four geoform features were classified at our study locations:
Continental Slope Slope, Continental Slope Valley, Seamount
Ridge, and Seamount Slope. Washington Canyon was outside of
the geoform analysis study area and therefore was not classified.
Seamount Ridge had the highest diversity while Continental
Slope Slope had the lowest (Figure 5). Kruskal-Wallis test
revealed significant differences in diversity among geoforms
[X2 (3) = 84.2, p < 0.001]. Non-parametric Wilcoxon pair-
wise comparisons revealed significant differences in diversity
among all geoforms (p < 0.017), but not between Continental
Slope Valley and Continental Slope Slope (p < 0.845). Kruskal-
Wallis test revealed no significant differences in abundances of
arthropods among geoforms [X2 (3) = 2.24, p < 0.5]. Significant
differences in abundances within phyla as a function of geoform
were found for Foraminifera [X2 (3) = 17.5, p < 0.001],
Echinodermata [X2 (3) = 88.5, p < 0.001], Mollusca [X2

(3) = 55.4, p < 0.001], Porifera [X2 (3) = 406.1, p < 0.001],
and Cnidaria [X2 (3) = 20.4, p < 0.001]. Non-parametric
Wilcoxon pair-wise comparisons revealed that abundances of
phyla varied with the geomorphology of the seafloor (Figure 6).
High abundances of the phyla, Echinodermata, Mollusca, and
Foraminifera were found on Continental Slope Valley. The
highest abundances of the phylum Porifera were found on
Seamount Ridges while abundances of Cnidaria were slightly
lower on Seamount Ridges and Seamount Slopes, respectively,
than the other geoforms.

DISCUSSION

This study demonstrates that there are significant differences in
species composition between canyon and seamount communities
that are driven by the abundances of sponges, sea urchins and
corals. Abundances of sponges and the coral Corallium spp.
were higher on seamounts than in canyons, while abundances
of the cup coral Desmophyllum dianthus were much greater in
canyons. The cup coral prefers sediment free vertical surfaces
for settlement (Cairns, 1995; Fillinger and Richter, 2013), which
were often observed in the canyon study sites. Actinarians drove
the high abundances of cnidarians in canyons, specifically on the
geoform Continental Slope Valley, while the branching corals,
Corallium spp. and unidentified branching corals were most
often observed on seamounts. Similarly, sponges were mainly
observed on Seamount Ridges and Seamount Slopes. Greater
abundances of sponges on seamounts may result from greater
oxygen and food availability as previous studies have shown
that current speed over seamount peaks can be double that
of wide, sloping areas at the same depth, leading to greater
food availability on peaks (Genin et al., 1986). Areas with high
currents are generally well oxygenated and combined with high
food availability may bolster population growth. Interestingly,
abundances of the squat lobster, Gastroptychus formosus, were
greatest on Seamount Slopes. Adults are known to have strong
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FIGURE 3 | Percent of hard and soft substrates observed in canyons and seamounts (n = 1,796). Hard substrate was observed more often on seamounts.

TABLE 2 | SIMPER (similarity percentage) results showing which taxa made the greatest contribution to the dissimilarity between canyon and seamount communities
(n = 1,105 segments).

Average abundance (# 25 m−2) Dissimilarity/SD % Contribution

Species Canyons Seamounts

Porifera sp. 2 0.48 (±0.08) 4.62 (±0.33) 0.83 16.69

Echinoidea 0.37 (±0.05) 0.86 (±0.13) 0.47 8.05

Farrea spp. 0.06 (±0.02) 3.08 (±0.31) 0.45 7.16

Desmophyllum dianthus 2.98 (0.41) 0.04 (0.01) 0.43 5.91

Corallium spp. 0 1.22 (±0.14) 0.47 5.36

Actiniidae 0.7 (±0.09) 0.04 (±0.01) 0.44 5.69

Xenophyophorea 0.68 (±0.12) 0.71 (±0.14) 0.35 4.75

Unidentified Corals 0.32 (±0.07) 0.2 (±0.03) 0.35 4.23

Asteroidea 0.09 (0.15) 0.12 (±0.02) 0.34 3.63

Chaceon quinquedens 0.37 (±0.05) 0.01 (±0.01) 0.33 3.04

Pennatulacea 0.05 (±0.01) 0.06 (±0.01) 0.27 2.76

Holothuriidae 0.03 (±0.01) 0.05 (±0.01) 0.25 1.95

Hertwigia spp. 0.01 (±0.01) 0.37 (±0.08) 0.27 1.63

Raw average abundances and standard errors are shown.

habitat associations with branching corals (Guilloux et al., 2009),
whose abundances are highest on seamounts (Dijkstra et al.,
2021). Associations between corals and other invertebrates are
not uncommon in the deep sea. Indeed, a number of species
from the class Ophiuroidea in this study were associated with
the branching coral Paramuricea spp., which was more often
observed on seamounts than in canyons (Dijkstra et al., 2021).
Ophuroids not associated with corals were observed, along
with bivalves, in high abundances on the geoform Continental
Slope Valley. Ophuroids are known to concentrate in areas of
high carbon export such as canyons where materials from the
continental shelf filter down the valleys to the seafloor (Woolley
et al., 2016). Bivalves, on the other hand, anchor on the hard

substrate protruding from the valley floor or on vertical ledges
using byssal threads.

Temperature, salinity and slope correlated with seamount
communities. The complex topography of seamounts are known
to produce localized physical oceanographic environments that
can be associated with strong currents that prevent a build-up
of sediment and exposes bare substrate for settlement by sessile
filter feeders such as corals and sponges that require a hard
stable surface for attachment (Lopes et al., 2011; Beazley et al.,
2013; Kazanidis et al., 2019). Similar to seamounts the seafloor
topography can create localized currents that lead to greater
nutrient and dissolved oxygen concentrations, which may enable
species to allocate more energy to development and enhance
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FIGURE 4 | Mean taxonomic richness, abundance, diversity (H′), and evenness (J′) for segments within canyons (n = 533) and segments on seamounts (n = 572).
Error bars are standard error. Asterisks denote significant differences.

FIGURE 5 | Diversity as a function of geomorphology (n = 1,105). Washington Canyon was excluded as bathymetry was not collected at this site. Highest diversity
was observed on seamounts, specifically seamount ridges. Diversity was significantly different among all geoforms, except for Continental Slope Slope and
Continental Slope Valley in which no differences were observed. Error bars represent standard error and different letters denote significant differences.

local population growth. High nutrient and dissolved oxygen
concentrations combined with a greater amount of sediment-free
hard substrate may facilitate local population growth as species
that have lecithotrophic larvae will find suitable settlement sites
close to the parent. Strong currents that produce sediment-
free substrate around seamounts may not change, however,

temperature is predicted to increase (Bindoff et al., 2019) and
salinity is expected to decrease (Dickson et al., 2002). Though
the predictions for temperature and salinity change appear small,
deep-sea species have evolved in relatively stable environments
and small changes that exceed mean environmental conditions
may create a sub-optimal habitat that may lead to reduced
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FIGURE 6 | Abundances of phyla as a function of geoformorphic classes Continental Slope Slope, Continental Slope Valley, Seamount Ridge, and Seamount Slope
(n = 1,105). Error bars are standard error. Different letters within phyla denote significant differences in abundances.

survivorship and growth, particularly for sessile filter feeders
(Hughes et al., 2019).

Salinity, depth and substrate characterized the canyon
communities. Depth is a well-known factor that shapes
community composition with differences in species assemblages
naturally occurring with depth (Cordes et al., 2010), including
those of octocoral and sponge assemblages (Schlacher et al., 2007;
Quattrini et al., 2015, 2017). Salinity also strongly influences the
composition of species. The deep North Atlantic Ocean, the body
of water that influences the New England Seamount communities
and canyons (Lapointe et al., 2020), has become slightly less saline
over the past 40 years (Dickson et al., 2002), and this trend is
expected to continue. Biological responses to small deviations
from current ambient levels of salinity are poorly understood,
but they may elicit sub-lethal changes in their physiological
functioning (e.g., DeBiasse et al., 2018), akin to the sub-lethal
effects of temperature deviations (e.g., Hughes et al., 2019).

High habitat heterogeneity observed in canyons has led to
the hypothesis that they support high levels of biodiversity
(Vetter and Dayton, 1999; De Leo et al., 2010; Fernandez-
Arcaya et al., 2017). Interestingly, our study indicates that
diversity, evenness, and taxonomic richness were higher on
seamounts than in canyons with diversity greatest on the

geoform Seamount Ridges. While deep sea canyons are known
to have many different habitats and are productive owing to
the strong currents and subsequent elevated concentrations of
food particles, suspension feeders will concentrate on exposed
hard substrate that is found as intermittent precipitous rock
walls, boulders and bedrock. In contrast, the geology and
hydrodynamics surrounding seamounts result in greater spatially
consistent exposed hard substrate that facilitate settlement and
growth of filter feeders (Genin et al., 1986; López-Garrido et al.,
2020). This may result in a more even distribution of species and
individuals as observed in this study.

Documenting species assemblages that inhabit canyons
and seamounts provides baseline data that can be used to
detect temporal changes in seafloor communities caused by
anthropogenic stressors. Temperature, dissolved oxygen and
salinity are predicted to change with the on-going effects of
climate change. Mean changes in seawater properties may
disproportionately affect sessile species such as corals and
sponges that when established are unable to move to a more
favorable environment. These sessile species act as habitat
for fish and other species that use them to seek refuge or
food, or as substrate by other filter feeding organisms (Mah,
2015; Ross et al., 2015), and climate induced changes in their
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composition may propagate through the food chain. Crabs and
other mobile species have the ability to move to more favorable
environments. However, studies evaluating movement of mobile
benthic deep-sea species in response to changing environmental
conditions are needed.

Using biological abundance data, rather than presence/absence
data, retains information about abundances within spatially-
explicit segments observed in this study. This makes the
community-environment relationship model more sensitive to
variation among communities (Cushman and McGarigal, 2004)
which was recently exemplified in a study that compared the
usefulness of presence/absence and species abundance data for
determination of areas that may require management attention
(Gonzalez-Mirelis et al., 2021). They found presence/absence
to be insufficient for applied management as modeled
presence/absence data highlighted areas that were either too
large or too small for their purposes. However, incorporating
abundances into their model enabled the detection of
specific locations of manageable size that were of interest for
conservation. Therefore, incorporating species abundances into
models of associated environmental and physical variables will
provide better predictions on the effects of climate change on
deep-sea communities and improve the detection and refinement
of the spatial extent of vulnerable marine habitats.
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